RE-DEFINING THE NORMAL ADRENOCORTICAL RESPONSE TO SURGERY

(1) Endocrinology, Division of Medicine, University College London, Royal Free Hospital, London, United Kingdom; (2) Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, London, United Kingdom; (3) Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Campus, London, United Kingdom; (4) Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, United Kingdom; (5) Department of Surgery, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom; (6) Department of Endocrine Surgery, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom

BACKGROUND

Previous studies on surgical stress cortisol responses have used older, less-specific assays, have not differentiated by severity, or only studied procedures of a defined type. AIM of this study: to examine the adrenocortical response to surgery of varied severity, utilising a widely used cortisol immunoassay.

METHOD

- Euthyroid patients undergoing elective surgery enrolled prospectively.
- Samples taken at 8 am on surgery, induction and 1 hr, 2 hr, 4 hr and 8 hr after.
- Subsequent samples taken daily (8 am) until post-op day 5 or hospital discharge.
- Total cortisol measured using an Abbott Architect immunoassay
- Cortisol binding globulin (CBG) measured using a radioimmunoassay.
- Surgical severity classified by POSSUM operative severity scores.

RESULTS

Ninety-three patients underwent elective surgery: Major/Major+ (n=37), Moderate (n=33), and Minor (n=23) (Table 1).

TABLE 1

<table>
<thead>
<tr>
<th>Specialty</th>
<th>Laparoscopic</th>
<th>Median Hosp. Stay (days)</th>
<th>Median op length (min)</th>
<th>Heart rate (bpm)</th>
<th>BMI (kg/m²)</th>
<th>Male:Female</th>
<th>Age (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck; CT, Cardiothoracic</td>
<td>1000</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Total cortisol (nmol/L)

* = significant difference between Minor and Moderate group.
** = significant difference between Moderate and Major/Major+ group.
*** = significant difference between Minor and Major/Major+ group.
**** = significant difference between Moderate and Major/Major+ group.

TABLE 1

Demographics of patients

<table>
<thead>
<tr>
<th>All (n=93)</th>
<th>Major/Major+ (n=37)</th>
<th>Moderate (n=33)</th>
<th>Minor (n=23)</th>
<th>Statistical comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>65.1 [51.0–68.0]</td>
<td>62.8 [51.1–68.3]</td>
<td>61.2 [51.0–68.0]</td>
<td>60.6 [51.0–68.0]</td>
</tr>
<tr>
<td>P<0.001 (Kruskal-Wallis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male/Female</td>
<td>48/45</td>
<td>23/15</td>
<td>19/16</td>
<td>19/15</td>
</tr>
<tr>
<td>P<0.001 (Kruskal-Wallis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cortisol (nmol/L)</td>
<td>1500</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak cortisol (nmol/L)</td>
<td>1500</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Change in CBG from 0800h baseline (%): Moderate vs Major/Major+ ‡‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in FCI from 0800h baseline (%): Moderate vs Major/Major+ ‡‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 2

Perioperative cortisol response for patients classified by surgical severity (Minor: filled circles, dotted lines; Moderate: filled squares, dashed lines; Major/Major+: filled triangles, solid lines). (A) Serum total cortisol values (medians with error bars representing interquartile range). (B) Values normalised to 8 am baseline cortisol on the day of operation (median with error bars representing interquartile range).

TIME COURSE OF CORTISOL RESPONSE TO SURGERY

Serum cortisol levels during Minor procedures fluctuated around baseline levels during the procedure. In patients undergoing surgeries classified as Moderate, cortisol levels typically returned to baseline by 8am by 8 hrs after induction. Patients undergoing Major/Major+ surgeries demonstrated total serum cortisol levels comparable to baseline on post-operative Days 1-5 (Figures 2A and 2B).

TIME COURSE OF CORTISOL BINDING GLOBULIN RESPONSE TO SURGERY

Cortisol binding globulin (CBG) was measured serially in a subgroup of 18 patients (6 Minor, 6 Moderate, 6 Major/Major+). Consistent with previous reports CBG dropped acutely during surgery (Figure 3A). The free cortisol index (FCI) was calculated as the ratio of total cortisol to CBG at each timepoint: there was a rise (Figure 3B), which was more marked in the Major/Major+ group compared to the Moderate and Minor groups at the 4 hr and 8 hr timepoints.

FIGURE 3

(A) Perioperative CBG response normalised (%) to baseline 8 am value, and separated into different surgical severities. Comparison, using Tukey’s multiple comparisons test, of Minor vs Major/Major+: P<0.001; P<0.001; P<0.001; P<0.001; P<0.001; P<0.001; P<0.001; P<0.001. (B) Perioperative free cortisol index (FCI) response normalised (%) to baseline 8 am value, separated into surgical severities. Comparison, using Tukey’s multiple comparisons test, of Minor vs Major/Major+: P<0.001; P<0.001; P<0.001; P<0.001; P<0.001; P<0.001; P<0.001; P<0.001. (C) Perioperative cortisol response normalised (%) to baseline 8 am value, separated into different surgical severities. Comparison, using Tukey’s multiple comparisons test, of Minor vs Major/Major+: P<0.001; P<0.001; P<0.001; P<0.001; P<0.001; P<0.001; P<0.001; P<0.001. (D) Perioperative cortisol response normalised (%) to baseline 8 am value, separated into different surgical severities. Comparison, using Tukey’s multiple comparisons test, of Minor vs Major/Major+: P<0.001; P<0.001; P<0.001; P<0.001; P<0.001; P<0.001; P<0.001; P<0.001.

CONCLUSIONS

- Cortisol responses to surgery are positively correlated with operative severity.
- Stress cortisol levels are lower in older studies, but comparable to more recent studies (1,2).
- CBG levels drop acutely during surgery, leading to elevated free cortisol exposure.
- Physiological levels of cortisol return to baseline by post-operative day 1 even in Major/Major+ surgery.
- These data support a graded approach to hydrocortisone replacement in hypoadrenal patients depending on operative severity (3).

REFERENCES